Smoothness Priors and Nonlinear Regression

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Deterministic regression smoothness priors TVAR modelling

In this paper we propose a method for the estimation of time-varying autoregressive processes. The approach is essentially to regularize the heavily underdetermined unconstrained prediction equations with a smoothness priors type side constraint. The implementation of nonhomogenous smoothness properties is straightforward. The method is compared to the usual determistic regression approach (TVA...

متن کامل

Seasonality in Regression: An Application of Smoothness Priors

This article argues that conventional approaches to the treatment of seasonality in econometric investigation are often inappropriate. A more appropriate technique is to allow all regression coefficients to vary with the season, but to constrain them to do so in a smooth fashion. A Bayesian method of estimating smoothly varying seasonal coefficients is developed, based on Shiller’s (1973) appro...

متن کامل

As-Rigid-As-Possible Stereo under Second Order Smoothness Priors

Imposing smoothness priors is a key idea of the top-ranked global stereo models. Recent progresses demonstrated the power of second order priors which are usually defined by either explicitly considering three-pixel neighborhoods, or implicitly using a so-called 3D-label for each pixel. In contrast to the traditional first-order priors which only prefer fronto-parallel surfaces, second-order pr...

متن کامل

Condensation-Based Contour Tracking with Sobolev Smoothness Priors

This paper proposes a combination of contour deformation modelling in Sobolev spaces and the Condensation filter to track an object over a sequence of images. As Sobolev spaces are smoothness spaces this allows to control the smoothness of the contour deformation extending previous wavelet representations. We also introduce a probabilistic model for the wavelet deformation of the contour that i...

متن کامل

Bayesian Non-negative Matrix Factorization with Learned Temporal Smoothness Priors

We combine the use of a Bayesian NMF framework to add temporal smoothness priors, with a supervised prior learning of the smoothness parameters on a database of solo musical instruments. The goal is to separate main instruments from realistic mono musical mixtures. The proposed learning step allows a better initialization of the spectral dictionaries and of the smoothness parameters. This appro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of the American Statistical Association

سال: 1984

ISSN: 0162-1459,1537-274X

DOI: 10.1080/01621459.1984.10478087